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Announcements



Lecture overview

* Uncertainty and Bayes Rule
* Art of probabilistic modeling

* Walking through Bayesian learning in a single parameter (binomial)
model

 Stan code for single parameter model



Uncertainty and Bayes rule



Uncertainty and probabilistic modeling

» Two types of uncertainty: aleatoric and epistemic
» Representing uncertainty with probabilities

» Updating uncertainty

Bayesian Data Analysis course (avehtari.github.io)
Video lectures, slides, etc: https://github.com/avehtari/BDA course Aalto



https://avehtari.github.io/BDA_course_Aalto/#Videos
https://github.com/avehtari/BDA_course_Aalto
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» Aleatoric uncertainty due to randomness

» Epistemic uncertainty due to lack of knowledge
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Two types of uncertainty

» Aleatoric uncertainty due to randomness

» we are not able to obtain observations which could reduce
this uncertainty

» Epistemic uncertainty due to lack of knowledge

» we are able to obtain observations which can reduce this

uncertainty
» two observers may have different epistemic uncertainty



Updating uncertainty

» Probability of red -—"*“— =0
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Updating uncertainty
» Probability of red —=— =0

» p(y = #red|@) = 0 aleatoric uncertainty
» p(O) epistemic uncertainty

» Data reduces epistemic uncertainty: Picking many chips updates our
uncertainty about the proportion

» p(Oly = #red, , #red, #red,...) =7?

» Bayes rule p(Oly) =



Uncertainty in modeling

Y = 0*x + noise Data
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Uncertainty in modeling

Y = 0% + noise Posterior mean

7.5




Uncertainty in modeling
Predictive distribution given posterior mean

Y = 0%x + noise

» Model: p(y|6) as a function of y given fixed 6
describes the aleatoric uncertainty



Uncertainty in modeling

Posterior draws

Y = 0%x + noise

» 0: our knowledge of @ also varies (epistemic
uncertainty)



Model vs. likelihood
» Bayes rule p(6|y) ocp(y|60)p(6)

» Model: p(y|0) as a function of y given fixed 6 describes the
aleatoric uncertainty

» Likelihood: p(y|@) as a function of 8 given fixed y provides
iInformation about epistemic uncertainty, but is not a
probability distribution

» Bayes rule combines the likelihood with prior uncertainty
p(0) and transforms them to updated posterior uncertainty



The art of probabilistic modeling

» The art of probabilistic modeling is to describe in a
mathematical form (model and prior distributions) what we
already know and what we don’t know
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The art of probabilistic modeling

» The art of probabilistic modeling is to describe in a
mathematical form (model and prior distributions) what we
already know and what we don’t know

» “Easy’ part is to use Bayes rule to update the uncertainties
» computational challenges

» Other parts of the art of probabilistic modeling are, for
example,

» Finding the right model that says something
useful

» model checking: is data in conflict with our prior
knowledge?

» presentation: presenting the model and the results to the
application experts



Single parameter example again



Binomial model for binary data

e Binomial model is the simplest model

e useful to discuss likelihood, posterior, prior, integration,
posterior summaries
e very commonly used as a building block
e examples:
* coin tossing
* chips from bag

 covid tests and vaccines
« classification / logistic regression



Binomial: known &

e Probability of event 1 in trial is 6

3/47



Binomial: known &

e Probability of event 1 in trial is 6
e Probability of event 2 in trial is 1 — 0

3/47



Binomial: known @

e Probability of event 1 in trial is 6
e Probability of event 2 in trial is 1 — 0

e Probability of several events in independent trials is e.g.
06(1L—-0)6(1L —6)(1—-0)...

3/47



Binomial: known &

e Probability of event 1 in trial is 6
e Probability of event 2 in trialis1 — 0

e Probabillity of several events in independent trials is e.qg.
06(1—-6)6(1—-6)(1-0)...

e |fthere are n trials and we don’t care about the order of the
events, then the probability that event 1 happens y times is

p(y16,n) =( 'y‘)ey(l — gy

3/47



Binomial: known &

e Observation model (function of y, discrete)

o(y |6, n) =(;‘ Y@ -6y

4/47



Binomial: known @

e Observation model (function of y, discrete)

py16m =( 1 P a-or

Binomial distribution with 0 =0.5, n=1
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Binomial: known @

e Observation model (function of y, discrete)
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Binomial: known @

e Observation model (function of y, discrete)

py16m =( 1 P a-or

Binomial distribution with 0 =0.9, n=10
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Binomial: unknown @

e Likelihood (function of 6, continuous)

pylom =( P a-or

~ Likelihood given y=6, n=10
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Binomial: unknown @

e Likelihood (function of 6, continuous)

6 given 0)

Likelihood (probability of y

pylom =( P a-or

Likelihood given y=6, n=10
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we can compute the value for any 6, but in practice can evaluate only finite times
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Binomial: unknown @

With linear interpolation,

looks smooth, and we'll
get back to later to
computational cost
iIssues

e Likelihood (function of 6, continuous)

6 given 0)

Likelihood (probability of y
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Binomial: unknown @

e Posterior with Bayes rule (function of 6, continuous)
p(y[6, n)p(O|n)

p(y|n)

p(Oly,n) =
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Binomial: unknown @

e Posterior with Bayes rule (function of 6, continuous)
p(y[6, n)p(O|n)

p(y|n)
where p(y|n) = J p(y|6,n)p(6|n)dO

p(Oly,n) =

8147



Binomial: unknown @

e Posterior with Bayes rule (function of 6, continuous)
p(y[6, n)p(O|n)

p(y|n)

where p(y[n) = [ p(y|6, n)p(6|n)do
e Start with uniform prior

p(Oly,n) =

p(0|n) = p(@|IM) =1, when0<0<L1

The textbook/lectures I'm
borrowing from
sometimes uses M to
remind us that this is an
assumption, and so
some gquantities are due
to our assumptions

8147



Binomial: unknown @

e Posterior with Bayes rule (function of 6, continuous)
p(y[6, n)p(O|n)

p(y|n)

where p(y[n) = [ p(y|6, n)p(6|n)do
e Start with uniform prior

p(Oly,n) =

p(0|n) = p(@|IM) =1, when0<O0<L1
e Then

p(ylo.n) (A -O)"Y
piyln) f3 ()ov(1 = O)nvdo

p(Oly,n) =

1
= . n-y
~0'(1-0)

8147



Binomial: unknown @

e Normalization term Z (constant given y)

[(y+ 1 (n—vy +1)
(n+2)

1
Z = p(y|n) =J; (1 -0)"7do =

9/47



Binomial: unknown @

e Normalization term Z (constant given y)

[(y+1)(n—-y +1)

1
z=|o(y|n>=fo oL -6y rdo= "D B

e Evaluate withy = 6,n = 10
y<—-6;n<-10;

integrate (function (theta) theta"y*x(l-theta)” (n-y), 0, 1)
= 0.0004329
gamma (6+1) *gamma (10-6+1) /gamma (10+2) = 0.0004329
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Binomial: unknown @

e Normalization term Z (constant given y)

[(y+1)(n—-y +1)

1
z=|o(y|n>=fo oL -6y rdo= "D B

e Evaluate withy = 6,n = 10
y<—-6;n<-10;

integrate (function (theta) theta"y*x(l-theta)” (n-y), 0, 1)
= 0.0004329
gamma (6+1) *gamma (10-6+1) /gamma (10+2) = 0.0004329

usually computed via log ['(-) due to the limitations of floating point presentation

9/47



Binomial: unknown @

e Posterior Is
['(n + 2)

[(y+1)I(h—y+1)

p(Bly,n) = (1 -0)y",
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Binomial: unknown &
e Posterior is
['(n + 2)
[(y+1)I(h—y+1)
which is called Beta distribution

p(Oly,n) = (1 -0)",
Oly,n ~Beta(ly +1,n —y + 1)

pP( 0 | y=6, n=10, M=[binom + unif. Prior])

0.00 0.25 0.50 0.75 1.00
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[Code demo with beta prior]



Binomial: computation

®R
density dbeta
CDF pbeta

guantile gbeta
random number rbeta

e Python

e from scipy.stats i1mport beta
e density beta.pdf

e CDF beta.cdf

e prctile beta.ppf

e random number beta.rvs



Binomial: computation

e Beta CDF not trivial to compute

e Forexample, pbeta Iin R uses a continued fraction with
weighting factors and asymptotic expansion

e Laplace developed normal approximation (Laplace

approximation), because he didn’'t know how to compute
Beta CDF

0.00 0.25 0.50 0.75 1.00



Placenta previa

e Probability of a girl birth given placenta previa (BDA3 p. 37)
e 437 girls and 543 boys have been observed
e |s the ratio 0.445 different from the population average
0.4857?
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Placenta previa

e Probability of a girl birth given placenta previa (BDA3 p. 37)
e 437 girls and 543 boys have been observed
e |s the ratio 0.445 different from the population average
0.4857?

Uniform prior —> Posterior is Beta(438,544)

0.40 0.45 0.50
theta

95% posterior interval

13/47



Some other one parameter models

e Poisson, useful for count data (e.g. in epidemiology)
e Exponential, useful for time to an event (e.g. particle decay)

47147



Questions?
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