ORIE 6217/CS6384: Applied Bayesian Data Analysis for Research Lecture 2: Bayesian Intro

Nikhil Garg

Announcements

Lecture overview

- Uncertainty and Bayes Rule
- Art of probabilistic modeling
- Walking through Bayesian learning in a single parameter (binomial) model
- Stan code for single parameter model

Uncertainty and Bayes rule

Uncertainty and probabilistic modeling

- Two types of uncertainty: aleatoric and epistemic
- Representing uncertainty with probabilities
- Updating uncertainty

Two types of uncertainty

- Aleatoric uncertainty due to randomness
- Epistemic uncertainty due to lack of knowledge

Two types of uncertainty

- Aleatoric uncertainty due to randomness
- we are not able to obtain observations which could reduce this uncertainty
- Epistemic uncertainty due to lack of knowledge

Two types of uncertainty

- Aleatoric uncertainty due to randomness
- we are not able to obtain observations which could reduce this uncertainty
- Epistemic uncertainty due to lack of knowledge
- we are able to obtain observations which can reduce this uncertainty
- two observers may have different epistemic uncertainty

Updating uncertainty

- Probability of red $\frac{\text { \#red }}{\text { \#red }+ \text { \#yellow }}=\theta$

Updating uncertainty

- Probability of red $\frac{\text { \#red }}{\text { \#red+\#yellow }}=\theta$
- $p(y=\# \mathrm{red} \mid \theta)=\theta \quad$ aleatoric uncertainty

Updating uncertainty

- Probability of red $\frac{\text { \#red }}{\text { \#red+\#yellow }}=\theta$
- $p(y=\# \mathrm{red} \mid \theta)=\theta \quad$ aleatoric uncertainty
- $p(\theta) \quad$ epistemic uncertainty

Updating uncertainty

- Probability of red $\frac{\text { \#red }}{\text { \#red }+ \text { \#yellow }}=\theta$
- $p(y=\# \operatorname{red} \mid \theta)=\theta \quad$ aleatoric uncertainty
- $p(\theta)$
epistemic uncertainty
- Data reduces epistemic uncertainty: Picking many chips updates our uncertainty about the proportion
- $p(\theta \mid \mathrm{y}=\#$ red, $\#$ yellow, $\#$ red, $\#$ red, $\ldots)=$?
- Bayes rule $p(\theta \mid y)=$

Uncertainty in modeling

$Y=\theta^{*} x+$ noise
 Data

Uncertainty in modeling

Posterior mean

Uncertainty in modeling
$Y=\theta^{*} x+$ noise
Predictive distribution given posterior mean

- Model: $p(\mathbf{y} \mid \theta)$ as a function of \mathbf{y} given fixed θ describes the aleatoric uncertainty

Uncertainty in modeling

$$
Y=\theta^{*} x+\text { noise }
$$

Posterior draws

- $\boldsymbol{\theta}$: our knowledge of $\boldsymbol{\theta}$ also varies (epistemic uncertainty)

Model vs. likelihood

- Bayes rule $p(\theta \mid y) \propto p(y \mid \theta) p(\theta)$
- Model: $p(\mathbf{y} \mid \theta)$ as a function of \mathbf{y} given fixed θ describes the aleatoric uncertainty
- Likelihood: $p(y \mid \boldsymbol{\theta})$ as a function of $\boldsymbol{\theta}$ given fixed y provides information about epistemic uncertainty, but is not a probability distribution
- Bayes rule combines the likelihood with prior uncertainty $p(\theta)$ and transforms them to updated posterior uncertainty

The art of probabilistic modeling

- The art of probabilistic modeling is to describe in a mathematical form (model and prior distributions) what we already know and what we don't know

The art of probabilistic modeling

- The art of probabilistic modeling is to describe in a mathematical form (model and prior distributions) what we already know and what we don't know
- "Easy" part is to use Bayes rule to update the uncertainties
- computational challenges

The art of probabilistic modeling

- The art of probabilistic modeling is to describe in a mathematical form (model and prior distributions) what we already know and what we don't know
- "Easy" part is to use Bayes rule to update the uncertainties
\rightarrow computational challenges
- Other parts of the art of probabilistic modeling are, for example,
- Finding the right model that says something useful
- model checking: is data in conflict with our prior knowledge?
- presentation: presenting the model and the results to the application experts

Single parameter example again

Binomial model for binary data

- Binomial model is the simplest model
- useful to discuss likelihood, posterior, prior, integration, posterior summaries
- very commonly used as a building block
- examples:
- coin tossing
- chips from bag
- covid tests and vaccines
- classification / logistic regression

Binomial: known θ

- Probability of event 1 in trial is θ

Binomial: known θ

- Probability of event 1 in trial is θ
- Probability of event 2 in trial is $1-\theta$

Binomial: known θ

- Probability of event 1 in trial is θ
- Probability of event 2 in trial is $1-\theta$
- Probability of several events in independent trials is e.g. $\theta \theta(1-\theta) \theta(1-\theta)(1-\theta) \ldots$

Binomial: known θ

- Probability of event 1 in trial is θ
- Probability of event 2 in trial is $1-\theta$
- Probability of several events in independent trials is e.g. $\theta \theta(1-\theta) \theta(1-\theta)(1-\theta) \ldots$
- If there are n trials and we don't care about the order of the events, then the probability that event 1 happens y times is

$$
p(y \mid \theta, n)=\binom{n}{y} \theta^{y}(1-\theta)^{n-y}
$$

Binomial: known θ

- Observation model (function of y, discrete)

$$
p(y \mid \theta, n)=\binom{n}{y} \theta^{y}(1-\theta)^{n-y}
$$

Binomial: known θ

- Observation model (function of y, discrete)

$$
p(y \mid \theta, n)=\binom{n}{y} \theta^{y}(1-\theta)^{n-y}
$$

Binomial distribution with $\theta=0.5, \mathrm{n}=1$

Binomial: known θ

- Observation model (function of y, discrete)

$$
p(y \mid \theta, n)=\binom{n}{y} \theta^{y}(1-\theta)^{n-y}
$$

Binomial: known θ

- Observation model (function of y, discrete)

$$
p(y \mid \theta, n)=\binom{n}{y} \theta^{y}(1-\theta)^{n-y}
$$

Binomial: unknown θ

- Likelihood (function of θ, continuous)

$$
p(y \mid \theta, n)=\binom{n}{y} \theta^{y}(1-\theta)^{n-y}
$$

Binomial: unknown θ

- Likelihood (function of θ, continuous)

$$
p(y \mid \theta, n)=\binom{n}{y} \theta^{y}(1-\theta)^{n-y}
$$

Binomial: unknown θ

- Likelihood (function of θ, continuous)

$$
p(y \mid \theta, n)=\binom{n}{y} \theta^{y}(1-\theta)^{n-y}
$$

With linear interpolation, looks smooth, and we'll get back to later to computational cost issues

Binomial: unknown θ

- Posterior with Bayes rule (function of θ, continuous)

$$
p(\theta \mid y, n)=\frac{p(y \mid \theta, n) p(\theta \mid n)}{p(y \mid n)}
$$

Binomial: unknown θ

- Posterior with Bayes rule (function of θ, continuous)

$$
p(\theta \mid y, n)=\frac{p(y \mid \theta, n) p(\theta \mid n)}{p(y \mid n)}
$$

where $p(y \mid n)=\int p(y \mid \theta, n) p(\theta \mid n) d \theta$

Binomial: unknown θ

- Posterior with Bayes rule (function of θ, continuous)

$$
p(\theta \mid y, n)=\frac{p(y \mid \theta, n) p(\theta \mid n)}{p(y \mid n)}
$$

where $p(y \mid n)=\int p(y \mid \theta, n) p(\theta \mid n) d \theta$

- Start with uniform prior

$$
p(\theta \mid n)=p(\theta \mid M)=1, \text { when } 0 \leq \theta \leq 1
$$

The textbook/lectures I'm borrowing from
sometimes uses M to remind us that this is an assumption, and so some quantities are due to our assumptions

Binomial: unknown θ

- Posterior with Bayes rule (function of θ, continuous)

$$
p(\theta \mid y, n)=\frac{p(y \mid \theta, n) p(\theta \mid n)}{p(y \mid n)}
$$

where $p(y \mid n)=\int p(y \mid \theta, n) p(\theta \mid n) d \theta$

- Start with uniform prior

$$
p(\theta \mid n)=p(\theta \mid M)=1 \text {, when } 0 \leq \theta \leq 1
$$

- Then

$$
\begin{aligned}
p(\theta \mid y, n) & =\frac{p(y \mid \theta, n)}{p(y \mid n)}=\frac{\binom{n}{y} \theta^{y}(1-\theta)^{n-y}}{\int_{0}^{1}\binom{n}{y} \theta y(1-\theta)^{n-y} d \theta} \\
& =\frac{1}{z} \theta^{y}(1-\theta)^{n-y}
\end{aligned}
$$

Binomial: unknown θ

- Normalization term Z (constant given y)

$$
Z=p(y \mid n)=\int_{0}^{1} \theta^{y}(1-\theta)^{n-y} d \theta=\frac{\Gamma(y+1) \Gamma(n-y+1)}{\Gamma(n+2)}
$$

Binomial: unknown θ

- Normalization term Z (constant given y)

$$
Z=p(y \mid n)=\int_{0}^{1} \theta^{y}(1-\theta)^{n-y} d \theta=\frac{\Gamma(y+1) \Gamma(n-y+1)}{\Gamma(n+2)}
$$

- Evaluate with $y=6, n=10$ $\mathrm{y}<-6$; $\mathrm{n}<-10$;
integrate(function(theta) theta^y*(1-theta)^(n-y), 0, 1)
≈ 0.0004329
gamma $(6+1)$ *gamma ($10-6+1$)/gamma (10+2) ≈ 0.0004329

Binomial: unknown θ

- Normalization term Z (constant given y)

$$
Z=p(y \mid n)=\int_{0}^{1} \theta^{y}(1-\theta)^{n-y} d \theta=\frac{\Gamma(y+1) \Gamma(n-y+1)}{\Gamma(n+2)}
$$

- Evaluate with $y=6, n=10$ $\mathrm{y}<-6$; $\mathrm{n}<-10$;
integrate(function(theta) theta^y*(1-theta)^(n-y), 0, 1)
≈ 0.0004329
gamma $(6+1)$ *gamma ($10-6+1$)/gamma ($10+2$) ≈ 0.0004329
usually computed via $\log \Gamma(\cdot)$ due to the limitations of floating point presentation

Binomial: unknown θ

- Posterior is

$$
p(\theta \mid y, n)=\frac{\Gamma(n+2)}{\Gamma(y+1) \Gamma(n-y+1)} \theta^{y}(1-\theta)^{n-y},
$$

Binomial: unknown θ

- Posterior is

$$
p(\theta \mid y, n)=\frac{\Gamma(n+2)}{\Gamma(y+1) \Gamma(n-y+1)} \theta^{y}(1-\theta)^{n-y},
$$

which is called Beta distribution

$$
\theta \mid y, n \sim \operatorname{Beta}(y+1, n-y+1)
$$

$$
p(\theta \mid y=6, n=10, M=[b i n o m+\text { unif. Prior }])
$$

[Code demo with beta prior]

Binomial: computation

- R
- density dbeta
- CDF pbeta
- quantile qbeta
- random number rbeta
- Python
- from scipy.stats import beta
- density beta.pdf
- CDF beta.cdf
- prctile beta.ppf
- random number beta.rvs

Binomial: computation

- Beta CDF not trivial to compute
- For example, pbeta in R uses a continued fraction with weighting factors and asymptotic expansion
- Laplace developed normal approximation (Laplace approximation), because he didn't know how to compute Beta CDF

Placenta previa

- Probability of a girl birth given placenta previa (BDA3 p. 37)
- 437 girls and 543 boys have been observed
- is the ratio 0.445 different from the population average 0.485 ?

Placenta previa

- Probability of a girl birth given placenta previa (BDA3 p. 37)
- 437 girls and 543 boys have been observed
- is the ratio 0.445 different from the population average 0.485 ?

95% posterior interval

Some other one parameter models

- Poisson, useful for count data (e.g. in epidemiology)
- Exponential, useful for time to an event (e.g. particle decay)

Questions?

