ORIE 6217/CS6384: Applied Bayesian Data Analysis for Research Lecture 2: Bayesian Intro

Nikhil Garg

Announcements

Lecture overview

- Uncertainty and Bayes Rule
 - Art of probabilistic modeling
- Walking through Bayesian learning in a single parameter (binomial) model
- Stan code for single parameter model

Uncertainty and Bayes rule

Uncertainty and probabilistic modeling

► Two types of uncertainty: aleatoric and epistemic

Representing uncertainty with probabilities

Updating uncertainty

<u>Bayesian Data Analysis course (avehtari.github.io)</u> Video lectures, slides, etc: <u>https://github.com/avehtari/BDA_course_Aalto</u> Two types of uncertainty

Aleatoric uncertainty due to randomness

Epistemic uncertainty due to lack of knowledge

Two types of uncertainty

- Aleatoric uncertainty due to randomness
 - we are not able to obtain observations which could reduce this uncertainty

Epistemic uncertainty due to lack of knowledge

Two types of uncertainty

- Aleatoric uncertainty due to randomness
 - we are not able to obtain observations which could reduce this uncertainty

Epistemic uncertainty due to lack of knowledge

- we are able to obtain observations which can reduce this uncertainty
- two observers may have different epistemic uncertainty

• Probability of red
$$\frac{\#red}{\#red + \#yellow} = \theta$$

► Probability of red
$$\frac{\#\text{red}}{\#\text{red} + \#\text{yellow}} = \theta$$

▶ $p(y = \#red | \theta) = \theta$ aleatoric uncertainty

Probability of red
$$\frac{\#\text{red}}{\#\text{red} + \#\text{yellow}} = \theta$$

▶ $p(y = \#red | \theta) = \theta$ aleatoric uncertainty

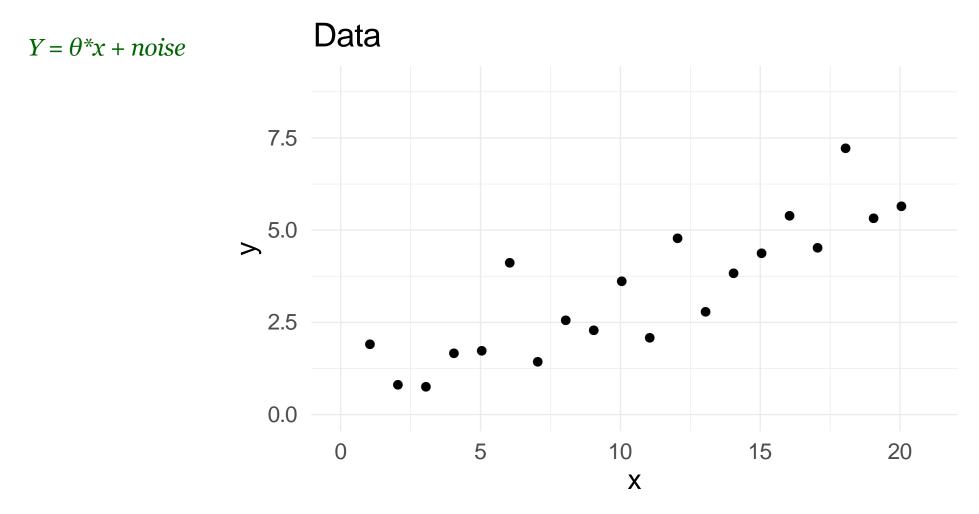
\triangleright *p*(θ) epistemic uncertainty

► Probability of red
$$\frac{\#\text{red}}{\#\text{red} + \#\text{yellow}} = \theta$$

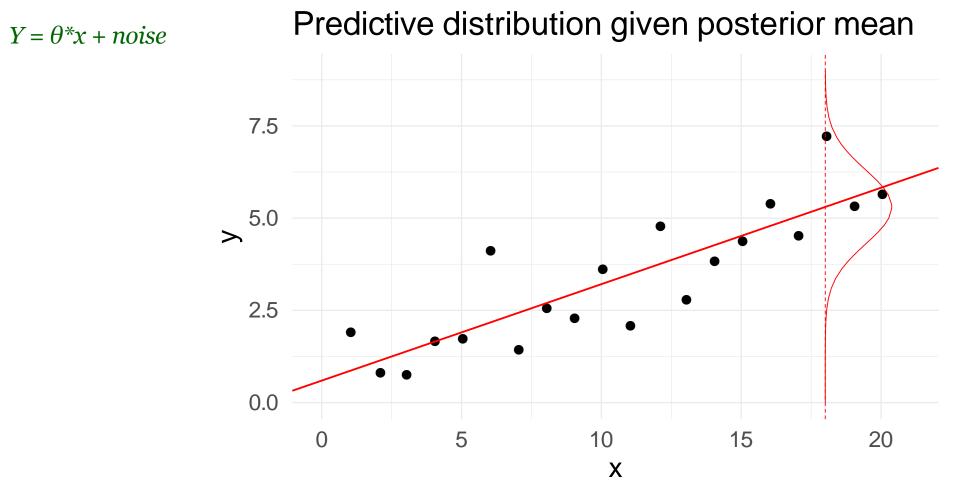
- $\blacktriangleright p(y = \#red | \theta) = \theta$ aleatoric uncertainty
- $\blacktriangleright p(\theta)$ epistemic uncertainty
- Data reduces epistemic uncertainty: Picking many chips updates our uncertainty about the proportion

► $p(\theta|y = #red, #yellow, #red, #red, ...) = ?$

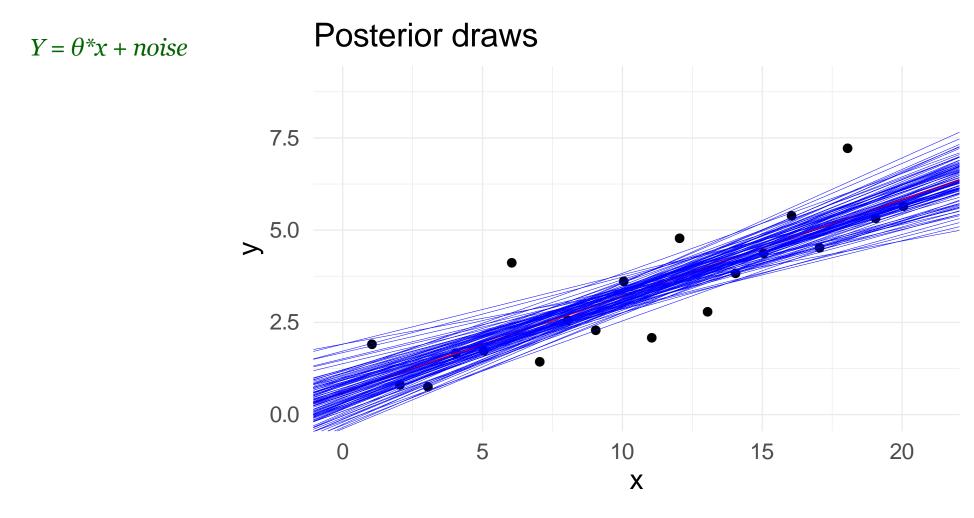
► Bayes rule $p(\theta|y) =$







Model: p(y|θ) as a function of y given fixed θ describes the aleatoric uncertainty



θ: our knowledge of θ also varies (epistemic uncertainty)

Model vs. likelihood

- ► Bayes rule $p(\theta|y) \propto p(y|\theta)p(\theta)$
- Model: p(y|θ) as a function of y given fixed θ describes the aleatoric uncertainty
- Likelihood: p(y| θ) as a function of θ given fixed y provides information about epistemic uncertainty, but is not a probability distribution
- Bayes rule combines the likelihood with prior uncertainty $p(\theta)$ and transforms them to updated posterior uncertainty

The art of probabilistic modeling

The art of probabilistic modeling is to describe in a mathematical form (model and prior distributions) what we already know and what we don't know The art of probabilistic modeling

The art of probabilistic modeling is to describe in a mathematical form (model and prior distributions) what we already know and what we don't know

"Easy" part is to use Bayes rule to update the uncertainties
 computational challenges

The art of probabilistic modeling

- The art of probabilistic modeling is to describe in a mathematical form (model and prior distributions) what we already know and what we don't know
- "Easy" part is to use Bayes rule to update the uncertainties
 computational challenges
- Other parts of the art of probabilistic modeling are, for example,
 - Finding the right model that says something useful
 - model checking: is data in conflict with our prior knowledge?
 - presentation: presenting the model and the results to the application experts

Single parameter example again

Binomial model for binary data

- Binomial model is the simplest model
 - useful to discuss likelihood, posterior, prior, integration, posterior summaries
 - very commonly used as a building block
 - examples:
 - coin tossing
 - chips from bag
 - covid tests and vaccines
 - classification / logistic regression

• Probability of event 1 in trial is θ

- Probability of event 1 in trial is θ
- Probability of event 2 in trial is 1θ

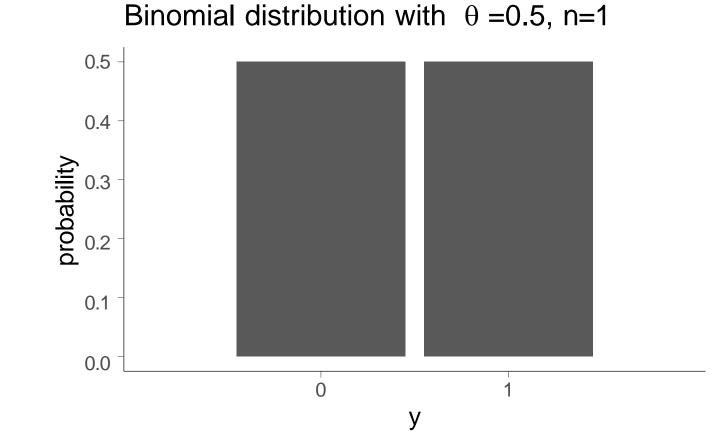
- Probability of event 1 in trial is θ
- Probability of event 2 in trial is 1θ
- Probability of several events in independent trials is e.g. $\theta\theta(1-\theta)\theta(1-\theta)(1-\theta)\dots$

- Probability of event 1 in trial is θ
- Probability of event 2 in trial is 1θ
- Probability of several events in independent trials is e.g. $\theta\theta(1-\theta)\theta(1-\theta)(1-\theta)\dots$
- If there are *n* trials and we don't care about the order of the events, then the probability that event 1 happens *y* times is

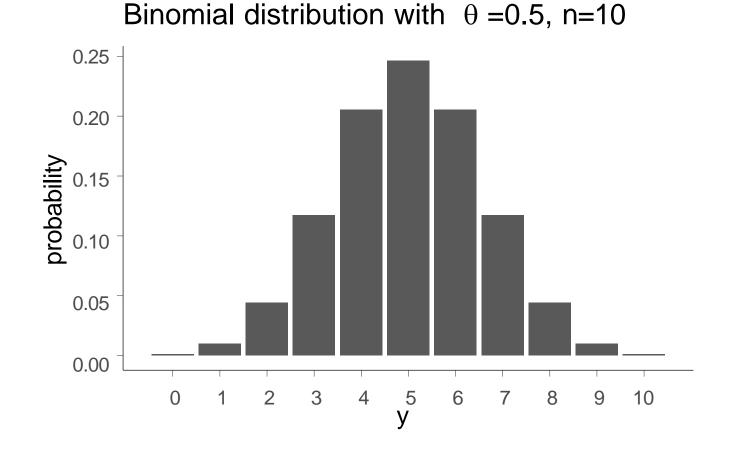
$$p(\mathbf{y}|\theta,n) = \binom{n}{\mathbf{y}} \theta^{\mathbf{y}} (1-\theta)^{n-\mathbf{y}}$$

$$p(\mathbf{y}|\boldsymbol{\theta},n) = \binom{n}{\mathbf{y}} \boldsymbol{\theta}^{\mathbf{y}} (1-\boldsymbol{\theta})^{n-\mathbf{y}}$$

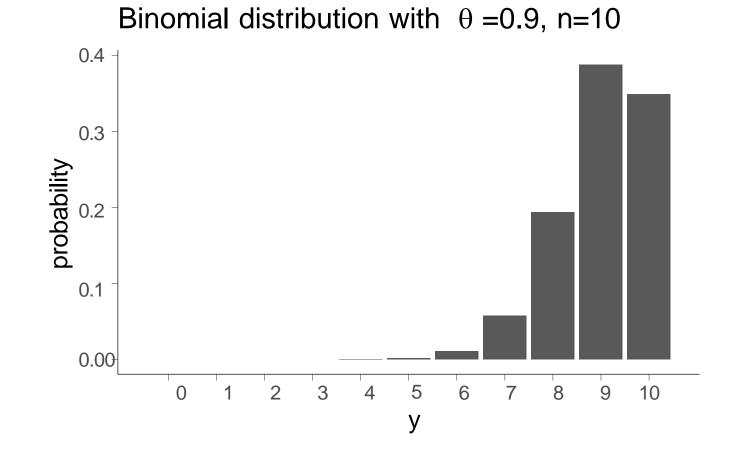
$$p(\mathbf{y}|\boldsymbol{\theta},n) = \binom{n}{\mathbf{y}} \boldsymbol{\theta}^{\mathbf{y}} (1-\boldsymbol{\theta})^{n-\mathbf{y}}$$



$$p(\mathbf{y}|\boldsymbol{\theta},n) = \binom{n}{\mathbf{y}} \boldsymbol{\theta}^{\mathbf{y}} (1-\boldsymbol{\theta})^{n-\mathbf{y}}$$

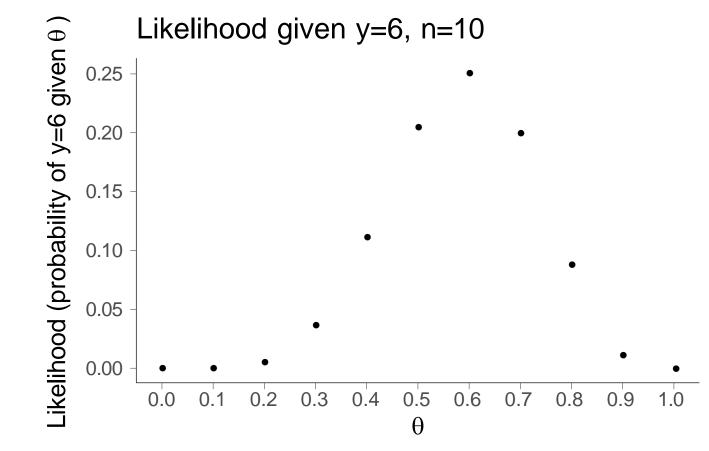


$$p(\mathbf{y}|\theta,n) = \binom{n}{\mathbf{y}} \theta^{\mathbf{y}} (1-\theta)^{n-\mathbf{y}}$$



• Likelihood (function of θ , continuous)

$$p(y|\theta, n) = \binom{n}{y} \theta^{y} (1 - \theta)^{n-y}$$

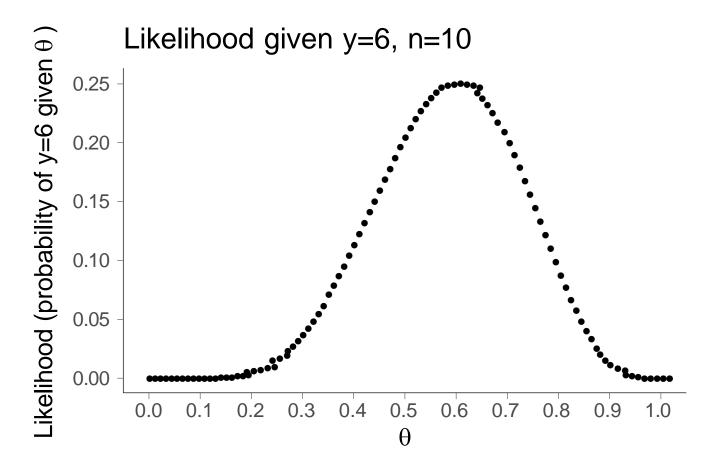


 $p(y = 6|n = 10, \theta)$: 0.00 0.00 0.01 0.04 0.11 **0.21** 0.25 0.20 0.09 **0.01** 0.00

7/47

• Likelihood (function of θ , continuous)

$$p(y|\theta, n) = \binom{n}{y} \theta^{y} (1 - \theta)^{n-y}$$

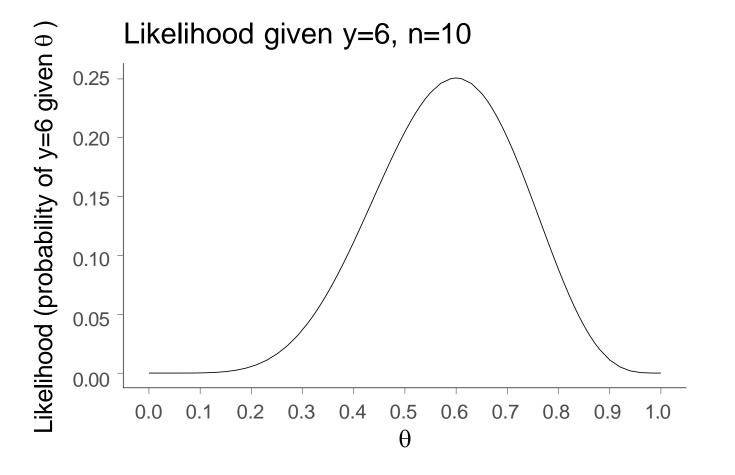


we can compute the value for any θ , but in practice can evaluate only finite times

• Likelihood (function of θ , continuous)

$$p(y|\theta, n) = \binom{n}{y} \theta^{y} (1 - \theta)^{n-y}$$

With linear interpolation, looks smooth, and we'll get back to later to computational cost issues



• Posterior with Bayes rule (function of θ , continuous)

$$p(\theta|y,n) = \frac{p(y|\theta, n)p(\theta|n)}{p(y|n)}$$

• Posterior with Bayes rule (function of θ , continuous) $p(\theta|y,n) = \frac{p(y|\theta, n)p(\theta|n)}{p(y|n)}$ where $p(y|n) = \int p(y|\theta, n)p(\theta|n)d\theta$

• Posterior with Bayes rule (function of θ , continuous)

 $p(\theta|y,n) = \frac{p(y|\theta,n)p(\theta|n)}{p(y|n)}$

where $p(y|n) = \int p(y|\theta, n) p(\theta|n) d\theta$

• Start with uniform prior

 $p(\theta|n) = p(\theta|M) = 1$, when $0 \le \theta \le 1$

The textbook/lectures I'm borrowing from sometimes uses *M* to remind us that this is an assumption, and so some quantities are due to our assumptions

• Posterior with Bayes rule (function of θ , continuous)

$$p(\theta|y,n) = \frac{p(y|\theta, n)p(\theta|n)}{p(y|n)}$$

where $p(y|n) = \int p(y|\theta, n) p(\theta|n) d\theta$

• Start with uniform prior

$$p(\theta|n) = p(\theta|M) = 1$$
, when $0 \le \theta \le 1$

• Then

$$p(\theta|y,n) = \frac{p(y|\theta,n)}{p(y|n)} = \frac{\binom{n}{y}\theta^{y}(1-\theta)^{n-y}}{\int_{0}^{1}\binom{n}{y}\theta^{y}(1-\theta)^{n-y}d\theta}$$
$$= \frac{1}{Z}\theta^{y}(1-\theta)^{n-y}$$

• Normalization term *Z* (constant given *y*)

$$Z = p(y|n) = \int_0^1 \theta^y (1-\theta)^{n-y} d\theta = \frac{\Gamma(y+1)\Gamma(n-y+1)}{\Gamma(n+2)}$$

• Normalization term *Z* (constant given *y*)

$$Z = p(y|n) = \int_0^1 \theta^y (1-\theta)^{n-y} d\theta = \frac{\Gamma(y+1)\Gamma(n-y+1)}{\Gamma(n+2)}$$

• Evaluate with y = 6, n = 10y<-6; n<-10;

integrate(function(theta) thetay*(1-theta)(n-y), 0, 1)

≈ 0.0004329

gamma(6+1)*gamma(10-6+1)/gamma(10+2) ≈ 0.0004329

• Normalization term *Z* (constant given *y*)

$$Z = p(y|n) = \int_0^1 \theta^y (1-\theta)^{n-y} d\theta = \frac{\Gamma(y+1)\Gamma(n-y+1)}{\Gamma(n+2)}$$

• Evaluate with *y* = 6, *n* = 10 y<-6; n<-10;

integrate(function(theta) thetay*(1-theta)(n-y), 0, 1)

≈ 0.0004329

```
gamma(6+1)*gamma(10-6+1)/gamma(10+2) ≈ 0.0004329
```

usually computed via log $\Gamma(\cdot)$ due to the limitations of floating point presentation

• Posterior is

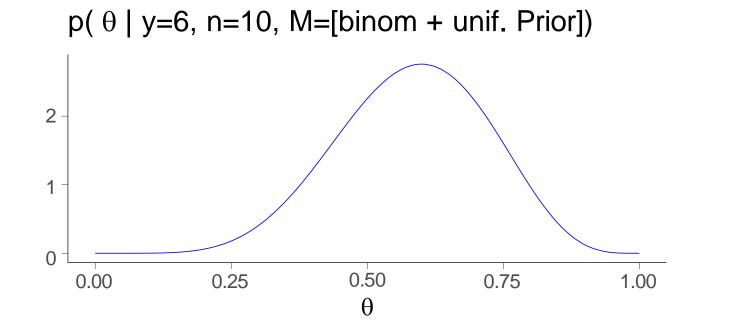
$$p(\theta|y,n) = \frac{\Gamma(n+2)}{\Gamma(y+1)\Gamma(n-y+1)}\theta^{y}(1-\theta)^{n-y},$$

• Posterior is

$$p(\theta|y,n) = \frac{\Gamma(n+2)}{\Gamma(y+1)\Gamma(n-y+1)}\theta^{y}(1-\theta)^{n-y},$$

which is called Beta distribution

$$\theta | y, n \sim \text{Beta}(y + 1, n - y + 1)$$



[Code demo with beta prior]

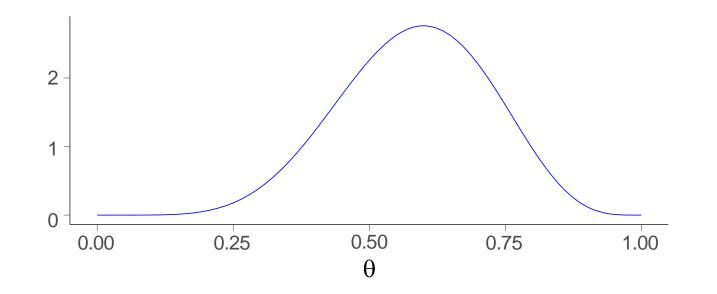
Binomial: computation

• R

- **density** dbeta
- CDF pbeta
- quantile qbeta
- random number rbeta
- Python
 - from scipy.stats import beta
 - **density** beta.pdf
 - CDF beta.cdf
 - prctile beta.ppf
 - random number beta.rvs

Binomial: computation

- Beta CDF not trivial to compute
- For example, pbeta in R uses a continued fraction with weighting factors and asymptotic expansion
- Laplace developed normal approximation (Laplace approximation), because he didn't know how to compute Beta CDF



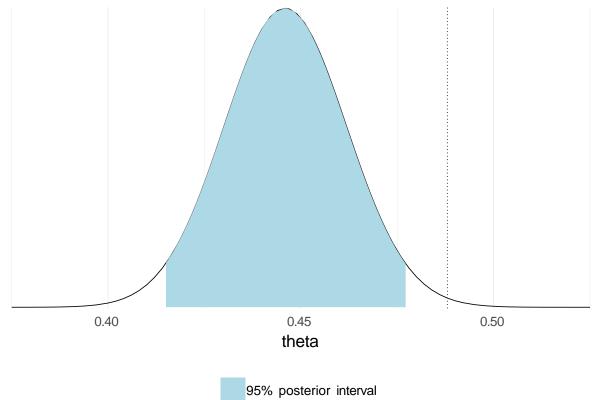
Placenta previa

- Probability of a girl birth given placenta previa (BDA3 p. 37)
 - 437 girls and 543 boys have been observed
 - is the ratio 0.445 different from the population average 0.485?

Placenta previa

- Probability of a girl birth given placenta previa (BDA3 p. 37)
 - 437 girls and 543 boys have been observed
 - is the ratio 0.445 different from the population average 0.485?

Uniform prior -> Posterior is Beta(438,544)



Some other one parameter models

- Poisson, useful for count data (e.g. in epidemiology)
- Exponential, useful for time to an event (e.g. particle decay)

Questions?