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Announcements



Lecture overview

• Uncertainty and Bayes Rule
• Art of probabilistic modeling

• Walking through Bayesian learning in a single parameter (binomial) 
model

• Stan code for single parameter model



Uncertainty and Bayes rule



Uncertainty and probabilistic modeling

► Two types of uncertainty: aleatoric and epistemic

► Representing uncertainty with probabilities

► Updating uncertainty

Bayesian Data Analysis course (avehtari.github.io)
Video lectures, slides, etc: https://github.com/avehtari/BDA_course_Aalto

https://avehtari.github.io/BDA_course_Aalto/#Videos
https://github.com/avehtari/BDA_course_Aalto
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► we are not able to obtain observations which could reduce 

this uncertainty

► Epistemic uncertainty due to lack of knowledge

► we are able to obtain observations which can reduce this 

uncertainty
► two observers may have different epistemic uncertainty
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Updating uncertainty

#red+#yellow
► Probability of red #red = θ

► p(y = #red|θ) = θ aleatoric uncertainty

► p(θ) epistemic uncertainty

► Data reduces epistemic uncertainty: Picking many chips updates our

uncertainty about the proportion

► p(θ|y = #red, #yellow, #red, #red, . . .) = ?

► Bayes rule p(θ|y) = 



Uncertainty in modeling
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Uncertainty in modeling

Posterior mean
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Uncertainty in modeling
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► Model: p(y|θ) as a function of y given fixed θ

describes the aleatoric uncertainty



Uncertainty in modeling

Posterior draws
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► θ: our knowledge of θ also varies (epistemic 

uncertainty)



Model vs. likelihood

► Bayes rule p(θ|y) ∝p(y|θ)p(θ)

► Model: p(y|θ) as a function of y given fixed θ describes the 

aleatoric uncertainty

► Likelihood: p(y|θ) as a function of θ given fixed y provides 

information about epistemic uncertainty, but is not a 

probability distribution

► Bayes rule combines the likelihood with prior uncertainty

p(θ) and transforms them to updated posterior uncertainty
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The art of probabilistic modeling

► The art of probabilistic modeling is to describe in a 

mathematical form (model and prior distributions) what we 

already know and what we don’t know

► “Easy” part is to use Bayes rule to update the uncertainties

► computational challenges

► Other parts of the art of probabilistic modeling are, for 
example,

► Finding the right model that says something 

useful

► model checking: is data in conflict with our prior 

knowledge?

► presentation: presenting the model and the results to the 

application experts



Single parameter example again



Binomial model for binary data

• Binomial model is the simplest model

• useful to discuss likelihood, posterior, prior, integration, 

posterior summaries
• very commonly used as a building block
• examples:

• coin tossing

• chips from bag

• covid tests and vaccines

• classification / logistic regression
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Binomial: known θ

• Probability of event 1 in trial is θ

• Probability of event 2 in trial is 1− θ

• Probability of several events in independent trials is e.g.

θθ(1− θ)θ(1− θ)(1− θ) . . .

• If there are n trials and we don’t care about the order of the 

events, then the probability that event 1 happens y times is

p(y|θ,n) =
n

y
( ) yθ (1− θ)n−y
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Binomial: known θ

• Observation model (function of y, discrete)

p(y|θ,n) =
n

y
yθ (1− θ)n−y( )



Binomial: known θ

• Observation model (function of y, discrete)

p(y|θ,n) =
n

y
yθ (1− θ)n−y

0

y
1

p
ro

b
a
b
ili

ty

Binomial distribution with  =0.5, n=1

0.5

0.4

0.3

0.2

0.1

0.0

( )



Binomial: known θ

• Observation model (function of y, discrete)

p(y|θ,n) =
n

y
yθ (1− θ)n−y

p
ro

b
a
b
ili

ty

y

Binomial distribution with  =0.5, n=10

0.25

0.20

0.15

0.10

0.05

0.00

0 1 2 3 4 5 6 7 8 9 10

( )



Binomial: known θ

• Observation model (function of y, discrete)

p(y|θ,n) =
n

y
yθ (1− θ)n−y
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Binomial: unknown θ

• Likelihood (function of θ, continuous)

p(y|θ, n) =
n

y
yθ (1− θ)n−y
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Binomial: unknown θ

• Likelihood (function of θ, continuous)

p(y|θ, n) =
n

y
yθ (1− θ)n−y
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Likelihood given y=6, n=10

we can compute the value for any θ, but in practice can evaluate only finite times 7 / 47
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Binomial: unknown θ

• Likelihood (function of θ, continuous)

p(y|θ, n) =
n

y
yθ (1− θ)n−y

Likelihood given y=6, n=10
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With linear interpolation, 

looks smooth, and we’ll

get back to later to

computational cost

issues
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Binomial: unknown θ

• Posterior with Bayes rule (function of θ, continuous)
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Binomial: unknown θ

• Posterior with Bayes rule (function of θ, continuous)

p(y|θ, n)p(θ|n)
p(θ|y, n) =

p(y|n)

where p(y|n) = ∫ p(y|θ, n)p(θ|n)dθ

• Start with uniform prior

p(θ|n) = p(θ|M) = 1, when 0 ≤ θ ≤ 1

The textbook/lectures I’m 

borrowing from 

sometimes uses M to 

remind us that this is an 

assumption, and so 

some quantities are due 

to our assumptions



Binomial: unknown θ

• Posterior with Bayes rule (function of θ, continuous)

p(y|θ, n)p(θ|n)
p(θ|y, n) =

p(y|n)

where p(y|n) = ∫ p(y|θ, n)p(θ|n)dθ

• Start with uniform prior

p(θ|n) = p(θ|M) = 1, when 0 ≤ θ ≤ 1

• Then

p(θ|y, n) =
p(y|θ, n)

p(y|n)

n
y

yθ (1− θ)n−y

1 n

8 / 47
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θy(1 − θ)n−ydθ
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∫
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Binomial: unknown θ

• Normalization term Z (constant given y)

1

0

y 1 n−y dZ = p(y|n) = θ ( −θ) θ=
Γ(y + 1)Γ(n− y + 1)

Γ(n + 2)∫
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Binomial: unknown θ

• Normalization term Z (constant given y)

1

0

y 1 n−y dZ = p(y|n) = θ ( −θ) θ=
Γ(y + 1)Γ(n− y + 1)

Γ(n + 2)

• Evaluate with y = 6, n = 10
y<-6;n<-10;

integrate(function(theta) thetaˆy*(1-theta)ˆ(n-y), 0, 1)

≈ 0.0004329

gamma(6+1)*gamma(10-6+1)/gamma(10+2) ≈ 0.0004329

∫
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Binomial: unknown θ

• Normalization term Z (constant given y)

1

0

y 1 n−y dZ = p(y|n) = θ ( −θ) θ=
Γ(y + 1)Γ(n− y + 1)

Γ(n + 2)

• Evaluate with y = 6, n = 10
y<-6;n<-10;

integrate(function(theta) thetaˆy*(1-theta)ˆ(n-y), 0, 1)

≈ 0.0004329

gamma(6+1)*gamma(10-6+1)/gamma(10+2) ≈ 0.0004329

usually computed via logΓ(·) due to the limitations of floating point presentation

∫
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Binomial: unknown θ

• Posterior is

Γ(y + 1)Γ(n− y + 1)

Γ(n + 2)
p(θ|y, n) = θy(1 − θ)n−y ,



Binomial: unknown θ

• Posterior is

Γ(y + 1)Γ(n− y + 1)

Γ(n + 2)
p(θ|y, n) = θy(1 − θ)n−y ,

which is called Beta distribution

θ|y,n ∼ Beta(y + 1, n− y + 1)

p(  | y=6, n=10, M=[binom + unif. Prior])

2

1

0
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[Code demo with beta prior]



Binomial: computation

•R

• density dbeta

• CDF pbeta

• quantile qbeta

• random number rbeta

• Python

• from scipy.stats import beta

• density beta.pdf

• CDF beta.cdf

• prctile beta.ppf

• random number beta.rvs



Binomial: computation

• Beta CDF not trivial to compute
• For example, pbeta in R uses a continued fraction with 

weighting factors and asymptotic expansion

• Laplace developed normal approximation (Laplace 

approximation), because he didn’t know how to compute 

Beta CDF

2
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Placenta previa

• Probability of a girl birth given placenta previa (BDA3 p. 37)
• 437 girls and 543 boys have been observed

• is the ratio 0.445 different from the population average 

0.485?



Placenta previa

• Probability of a girl birth given placenta previa (BDA3 p. 37)
• 437 girls and 543 boys have been observed

• is the ratio 0.445 different from the population average 

0.485?

Uniform prior −> Posterior is Beta(438,544)

0.40 0.45

theta

0.50

95% posterior interval
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Some other one parameter models

• Poisson, useful for count data (e.g. in epidemiology)

• Exponential, useful for time to an event (e.g. particle decay)



Questions?
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